Ноябрьская контрольная по ТРЯП предлагаемые задачи ФПМИ 2020

Разбалловка и общие положения

неуд	удовл	хорошо	ОНРИПТО
$0 \leqslant \Sigma < 12$	$14\leqslant \Sigma\leqslant 19$	$20 \leqslant \Sigma \leqslant 28$	$29 \leqslant \Sigma \leqslant 42$
1: [0, 6), 2: [6, 12)	3: [12, 16), 4: [16, 20)	5: [20, 22), 6: [22, 24), 7: [24, 26)	8: [26, 29), 9: [29, 31), 10: [31, 32]

Приведённые ниже критерии оценивания выработанны с учётом типовых ошибок и определяют общую политику проверки, однако заведомо не могут покрыть всевозможные случаи. При некритериальном случае, проверяющий оценивает решение исходя из здравого смысла и духа критериев.

Напоминаем положения, указанные в преамбуле к контрольной.

- 1. Ответы, включая правильные, при отсутствии решений оцениваются в 0 (ноль) баллов.
- 2. Объекты, полученные «методом внимательного вглядывания», без доказательства корректности построения оцениваются в 0 (ноль) баллов.
- 3. При формулировке вопроса «верно ли, что», в случае положительного ответа приведите доказательство, а в случае отрицательного контрпример. Верное рассуждение без контрпримера оценивается в половину задачи.

Критерии проверки и некоторые ответы, указания и решения

1(2) . Отметьте номера позиций всех символов в РВ $(a_1 b_2)a_3b_4^*(a_5^*a_6 b_7b_8)^*$ входящих в множество followpos(3).
\Box 1
\square 2
\square 3
☑ 4
☑ 5
☑ 6
I 7
□ 8
I 9
Критерии.
-1 Не включено 9
0 Другие ошибки

- **2** (3). В каждом пункте укажите, для каких языков ('для любых'= \forall , 'лишь для некоторых' = S, 'ни для каких' = $\not\equiv$) из первой части предложения выполняется утверждение из второй части.
 - 1. $\[\] U$: (L можно описать некоторым $PB \Rightarrow для L$ выполняется лемма о накачке).
 - 2. \square L: (для L существует бесконечно много классов L-эквивалентности \Rightarrow для L выполняется отрицание леммы о накачке).
 - 3. \bot L: (L можно распознать ДКА с одним финальным состоянием \Rightarrow классов L-эквивалентности бесконечно много).

Критерии.

- -1 За каждую ошибку
- **3** (4). Отметьте все верные утверждения и только их для произвольных языков $X,Y\subseteq \Sigma^*$. Через $[w]^L$ обозначим класс эквивалентности Майхила–Нероуда для языка L, через $[w]_R^L$ правый контекст для слова w (относительно языка L). Напомним, что $[w]_R^L=\{z\mid wz\in L\}$.
 - 1. $\square X = Y$ тогда и только тогда, когда $\forall w \in X \cup Y : [w]^X = [w]^Y$.
 - 2. $\square\, X=Y$ тогда и только тогда, когда $\forall w\in \Sigma^*: [w]^X=[w]^Y.$

 - 4. $\square X = Y$ тогда и только тогда, когда $\forall w \in \Sigma^* : [w]_R^X = [w]_R^Y$.

Критерии.

- -2 Одна ошибка
- 0 Две и более ошибки

Контрольные вопросы

Обоснованно ответьте на вопрос

4(2). Предъявите константу леммы о накачке для языка

$$\{a^n \mid 0 \leqslant n \leqslant 2020\}.$$

Указание. Ответ: 2021. В языке нет слов длины 2021 и более, поэтому при выборе этой константы условие леммы должно выполняться для пустого множества.

Критерии.

- 0 Верный ответ и в качестве обоснования приведена только формулировка леммы о накачке (и ссылка на регулярность языка).
- 0,5 Верный ответ и ссылка на конечность языка (слов всего 2020)
- 5 (3). Приведите пример последовательности слов w_n , для каждого элемента которой суффиксный автомат содержит n принимающих состояний.

Указание. $w_n = a^{n-1}$

Критерии.

- 0 Не приведена последовательность
- -0,5 Для ответ $w_n=a^n$
 - 1 Последовательность (с обоснованием)
 - 1 Описание автомата
 - 1 Доказательство минимальности автомата
- 6 (3). Найдите число классов эквивалентности Майхилла-Нероуда для языка $\Sigma^* aaba$.

Критерии.

-0,5 Построен КМП-автомат без объяснения, что это КМП-автомат.

Задачи

Приведите обоснованное решение

7(3). Постройте суффиксный автомат для слова *aabab*.

Критерии.

- 0 Построен автомат Ахо-Корасик вместо суффиксного автомата
- -0,5 Начальное состояние не принимающее
- -0,5 Не удалено «мусорное состояние» после применение алгоритма минимизации
 - -1 Ошибка в минимизации
 - 0 Построен не минимальный автомат (без учёта случаев ошибки в алгоритме минимизации)
- 8 (3). Пусть $S = \{cab, ab, bca\}$, $\Sigma = \{a, b, c\}$. Постройте ДКА, распознающий слова, не содержащие суффикса из множества S.

Критерии.

- +0.5 Построен автомат-словарь
 - +1 Построен автомат Ахо-Корасик (не ДКА)
 - 1,5 Построен автомат Ахо-Корасик (не ДКА) с инвертированными состояниями
- -0,5 Построен автомат Ахо-Корасик без объяснения, что это Ахо-Корасик.

9 (5=1,5+0,5+1,5+1,5). Отметьте среди перечисленных все регулярные языки (и только их) над алфавитом $\Sigma = \{a, b\}$. (Нужно также привести доказательство регулярности или нерегулярности)

- 1. $\square \{w : |w|_a |w|_b > |w|/2\}$
- 2. $\square \{w : (|w|_a + |w|_b)/2 > |w|/3\}$
- 3. $\square \{w : (|w|_a = |w|_b) \land (|w|_{aa} = 0) \land (|w|_{bb} = 0)\}$
- 4. $\square \{w : |w|_{aba} = |w|_b\}$

10 (4). Определим языки L_0 и L над алфавитом $\Sigma = \{a, b\}$:

$$L_0 = \{ w \mid \exists m, k > 0 : |w|_a = 3m \ |w|_b = 5k \}.$$

$$L = \{ w \mid \exists n > 0 : w = w_1 w_2 \dots w_n, w_i \in L_0 \}.$$

Является ли L регулярным?

Указание. Язык L_0 регулярный как пересечение двух регулярных языков $\{w \mid \exists m>0: |w|_a=3m\}, \ \{w \mid \exists k>0: |w|_b=5m\}$ (для каждого языка можно легко построить автомат и доказать корректность). Дальше нужно осознать, что $L=L_0^+=L_0L_0^*$. Или даже, что $L=L_0$.